导读
为了研究车机系统对司机视觉资源的占用,我们采用Tobii Glasses2眼动仪,采集驾驶员在真实路况上驾驶时的眼动信息,得到行车状态下两种智能语音车机在执行交互任务时,对用户注意资源的占用情况。
比如发布在《人类工效学》上的《基于眼动和脑电技术的机器人情绪行为对用户交互情感的影响研究》一文,用眼动测量得到瞳孔直径判断人和机器人交互时的情绪唤醒度,用脑电测量得到的额中线theta波和额区alpha波的不对称性判断用户的情绪效价。
PC和移动产品的交互体验有“强注意力”的特点,我们希望获取用户更多的注意力。因此传统的网页研究或者广告研究,通常为视觉单一通道的研究,在热力图的分析中以用户注视多的方案为优。而AI交互希望打造自然、低成本、接近用户本能的交互体验。这种体验往往是多感官通道的,要达到组合体验最优就需要探索不同通道间的配合与平衡,视觉通道的占用就不是越多越好。
还是以车机研究为例,案头发现,在驾驶场景中,人们需要90%以上的视觉资源维持驾驶绩效保证安全驾驶,我们的研究目的是提升语音交互效率减少用户对中控车机的关注。研究发现,当语音的引导明确、屏幕内容和语音引导配合一致时,用户花费较少的视觉资源便可获得所需信息(见方案一热力图);而当语音交互缺乏有效引导,屏幕内容与语音引导配合不当时,用户会花更多视觉资源在车机屏幕的信息加工上(见方案二热力图)。
由于不同生理测量仪器需要在各自限定条件下进行生理信号的采集,所以要关注数据采集和还原被试自由度之间的平衡,如脑电测量时,为保证信号采集的稳定性,要尽量避免头部大幅运动。此外,还要注意任务设置和时长控制,如通过眼镜式眼动仪进行眼动测试,要避免被试中途摘下眼镜导致数据丢失。
VR的嵌入,拓展了眼动研究的场景,可以快速切换实验场景,并让高危场景研究更为深入;
眼动研究内容在AI交互设计领域有所延伸,包括多通道研究及情感研究;
眼动研究更多与脑电等测量仪器及机器学习等技术手段相结合;
体验目标的变化,眼动数据不再是越多越好,而是多通道的最佳组合;
打造真实场景,做好流程规划和实验控制。
眼动研究作为探索人类视觉的工具,在PC和移动时代都发挥了重要作用。我们这一代做用户研究的人经历了传统的桌面研究,做过需要准备上百实验素材的实验室静态研究,目前正在探索基于真实场景的高自由度眼动研究,并引入脑电等更多生理测量仪器,辅以机器学习,赋予眼动研究更高价值。